


3.4 Practical Problems

Lecturer: Xue Deng



In practical life, there are many practical optimization                               

problems, how to deal with the practical problems?

Suggest: step-by step method.



Solving Method: Computation steps
Step1 Draw a picture and assign appropriate variables.

Step2 Write a formula for the objective function Q. 

Step3 Express Q as a  function of a single variable.

Step4 Find the critical points (end, stationary and singular points).

Step5 Determine the maximum or minimum.
If there is a unique stationary point about the objective function, the 
function value of this point is the desirable maximum (minimum).
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Then: Find maximum point

Find the greatest volume that a right circular cylinder can have 

if it is inscribed in a sphere of radius R.

Let the height of cylinder be 2h , radius be r , volume be V
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  the maximum volume of the cylinder must be obtained.)

 The maximum volume:
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   (Unique stationary point:
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Rh So the unique stationary point is the maximum value point.

Find the greatest volume that a right circular cylinder can have 

if it is inscribed in a sphere of radius r.



Example 2
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Find a point                     such that                                            2P y x 

         triangle area bounded by the  tangent line through P, y=0 and x=8 is the maximum.    

the tangent line PT :
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is the final result.



Summary of Practical Problems

The steps to solve the practical optimization problems: 
Step1 Draw a picture and assign appropriate variables.

Step2 Write a formula for the objective function Q. 

Step3 Express Q as a  function of a single variable.

Step4 Find the critical points (end, stationary and singular points).

Step5 Determine the maximum or minimum.



Questions and Answers

A rectangular box is to be made from a piece of cardboard 

24 inches long and 9 inches wide by cutting out identical 

squares from the four corners and turning up the sides. 

Q1: Find the dimensions of the box of maximum volume.

Q2: What is this volume?                          (See book P167)



Questions and Answers
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Let 0,obtain 2, 9(delete)xV x x   

So there are only there critical point: 0 , 2 and 4.5 .
     0 0 ,  4.5 0 ,  2 200V V V  

Then  is the final result. The volume is .
The box is 20 inches long, 5 inches wide, and 2 inches 

2 200
deep.
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Let  be the width of the square to be cut out 
and  the volume of the resulting box .
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